
ar
X

iv
:p

hy
si

cs
/9

90
80

41
 v

1 
  2

1 
A

ug
 1

99
9

Gravitational Waves: An Introduction

Indrajit Chakrabarty∗†

Abstract

In this article, I present an elementary introduction to the theory
of gravitational waves. This article is meant for students who have
had an exposure to general relativity, but, results from general rela-
tivity used in the main discussion has been derived and discussed in
the appendices. The weak gravitational field approximation is first
considered and the linearized Einstein’s equations are obtained. We
discuss the plane wave solutions to these equations and consider the
transverse-traceless (TT) gauge. We then discuss the motion of test
particles in the presence of a gravitational wave and their polarization.
The method of Green’s functions is applied to obtain the solutions to
the linearized field equations in presence of a nonrelativistic, isolated
source.
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1 Introduction

In the past few years, research on the detection of gravitational waves has
assumed new directions. Efforts are now underway to detect gravitational
radiation from astrophysical sources, thereby enabling researchers to pos-
sess an additional tool to study the universe (See [6] for a recent review).
According to Newton’s theory of gravitation, the binary period of two point
masses (e.g., two stars) moving in a bound orbit is strictly a constant quan-
tity. However, Einstein’s general theory of relativity predicts that two stars
revolving around each other in a bound orbit suffer accelerations, and, as a
result, gravitational radiation is generated. Gravitational waves carry away
energy and momentum at the expense of the orbital decay of two stars,
thereby causing the stars to gradually spiral towards each other and giving
rise to shorter and shorter periods. This anticipated decrease of the orbital
period of a binary pulsar was first observed in PSR 1913+16 by Taylor and
Weisberg ([4]). The observation supported the idea of gravitational radia-
tion first propounded in 1916 by Einstein in the Proceedings of the Royal
Prussian Academy of Knowledge. Einstein showed that the first order con-
tributon to the gravitational radiation must be quadrupolar in a particular
coordinate system. Two years later, he extended his theory to all coordinate
systems.

The weak nature of gravitational radiation makes it very difficult to
design a sensitive detector. Filtering out the noisy background to isolate
the useful signal requires great technical expertise. itself a field of research.
Various gravitational wave detectors are fully/partially operational and we
expect a certain result to appear from the observations in the near future.

This article gives an elementary introduction to the theory of gravita-
tional waves. Important topics in general relativity including a brief intro-
duction to tensors and a derivation of Einstein’s field equations are discussed
in the appendices. We first discuss the weak gravitational field approxima-
tion and obtain the linearized Einstein’s field equations. We then discuss
the plane wave solutions to these equations in vacuum and the restriction on
them due to the transverse-traceless (TT) gauge. The motion of particles in
the presence of gravitational waves and their polarization is then discussed
in brief. We conclude by applying the method of Green’s functions to show
that gravitational radiation from matter at large distances is predominantly
quadrupolar in nature.
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2 The weak gravitational field approximation

Einstein’s theory of general relativity leads to Newtonian gravity in the limit
when the gravitational field is weak & static and the particles in the gravita-
tional field move slowly. We now consider a less restrictive situation where
the gravitational field is weak but not static, and there are no restrictions
on the motion of particles in the gravitational field. In the absence of grav-
ity, space-time is flat and is characterised by the Minkowski metric, ηµν . A
weak gravitational field can be considered as a small ’perturbation’ on the
flat Minkowski metric[3],

gµν = ηµν + hµν , |hµν | ≪ 1 (1)

Such coordinate systems are often called Lorentz coordinate systems. Indices
of any tensor can be raised or lowered using ηµν or ηµν respectively as
the corrections would be of higher order in the perturbation, hµν . We can
therefore write,

gµν = ηµν − hµν (2)

Under a background Lorentz transformation ([3]), the perturbation trans-
forms as a second-rank tensor:

hαβ = Λ µ
α Λ ν

β hµν (3)

The equations obeyed by the perturbation, hµν , are obtained by writing the
Einstein’s equations to first order. To the first order, the affine connection
(See App. A) is,

Γλ
µν =

1

2
ηλρ[∂µhρν + ∂νhµρ − ∂ρhµν ] + O(h2) (4)

Therefore, the Riemann curvature tensor reduces to

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓλ

νρ (5)

The Ricci tensor is obtained to the first order as

Rµν ≈ R(1)
µν =

1

2

[

∂λ∂νh
λ
µ + ∂λ∂µhλ

nu − ∂µ∂νh − 2hµν

]

(6)

where, 2 ≡ ηλρ∂λ∂ρ is the D’Alembertian in flat space-time. Contracting
again with ηµν , the Ricci scalar is obtained as

R = ∂λ∂µhλµ − 2h (7)
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The Einstein tensor, Gµν , in the limit of weak gravitational field is

Gµν = Rµν −
1

2
ηµνR =

1

2
[∂λ∂νhλ

µ + ∂λ∂µhλ
ν − ηµν∂µ∂νhµν + ηµν2h− 2hµν ]

(8)
The linearised Einstein field equations are then

Gµν = 8πGT µν (9)

We can’t expect the field equations (9) to have unique solutions as any solu-
tion to these equations will not remain invariant under a ’gauge’ transforma-
tion. As a result, equations (9) will have infinitely many solutions. In other
words, the decomposition (1) of gµν in the weak gravitational field approx-
imation does not completely specify the coordinate system in space-time.
When we have a system that is invariant under a gauge transformation, we
fix the gauge and work in a selected coordinate system. One such coordinate
system is the harmonic coordinate system ([5]). The gauge condition is

gµνΓλ
µν = 0 (10)

In the weak field limit, this condition reduces to

∂λhλ
µ =

1

2
∂µh (11)

This condition is often called the Lorentz gauge. In this selected gauge, the
linearized Einstein equations simplify to,

2hµν − 1

2
ηµν2h = −16πGT µν (12)

The ‘trace-reversed’ perturbation, h̄µν , is defined as ([3]),

h̄µν = hµν − 1

2
ηµνh (13)

The harmonic gauge condition further reduces to

∂µh̄µ
λ = 0 (14)

The Einstein equations are then

2h̄µν = −16πGT µν (15)

4



3 Plane-wave solutions and the transverse-traceless
(TT) gauge

From the field equations in the weak-field limit, eqns.(15), we obtain the
linearised field equations in vacuum,

2h̄µν = 0 (16)

The vacuum equations for h̄µν are similar to the wave equations in electro-
magnetism. These equations admit the plane-wave solutions,

h̄µν = Aµνexp(ιkαxα) (17)

where, Aµν is a constant, symmetric, rank-2 tensor and kα is a constant
four-vector known as the wave vector. Plugging in the solution (17) into the
equation (16), we obtain the condition

kαkα = 0 (18)

This implies that equation (17) gives a solution to the wave equation (16)
if kα is null; that is, tangent to the world line of a photon. This shows
that gravitational waves propagate at the speed of light. The time-like
component of the wave vector is often referred to as the frequency of the
wave. The four-vector, kµ is usually written as kµ ≡ (ω,k). Since kα is null,
it means that,

ω2 = |k|2 (19)

This is often referred to as the dispersion relation for the gravitational wave.
We can specify the plane wave with a number of independent parameters;
10 from the coefficients, Aµν and three from the null vector, kµ. Using the
harmonic gauge condition (14), we obtain,

kαAαβ = 0 (20)

This imposes a restriction on Aαβ : it is orthogonal (transverse) to kα. The
number of independent components of Aµν is thus reduced to six. We have
to impose a gauge condition too as any coordinate transformation of the
form

xα′

= xα + ξα(xβ) (21)

will leave the harmonic coordinate condition

2xµ = 0 (22)
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satisfied as long as
2ξα = 0 (23)

Let us choose a solution

ξα = Cαexp(ιkβxβ) (24)

to the wave equation (23) for ξα. Cα are constant coefficients. We claim
that this remaining freedom allows us to convert from the old constants,

A
(old)
µν , to a set of new constants, A

(new)
µν , such that

A(new) µ
µ = 0 (traceless) (25)

and
AµνUβ = 0 (26)

where, Uβ is some fixed four-velocity, that is, any constant time-like unit
vector we wish to choose. The equations (20), (25) and (26) together are
called the transverse traceless (TT) gauge conditions ([3]). Thus, we have
used up all the available gauge freedom and the remaining components of
Aµν must be physically important. The trace condition (25) implies that

h̄TT
αβ = hTT

αβ (27)

Let us now consider a background Lorentz transformation in which the
vector Uα is the time basis vector Uα = δα

0. Then eqn.(26) implies that
Aµ0 = 0 for all µ. Let us orient the coordinate axes so that the wave
is travelling along the z-direction, kµ → (ω, 0, 0, ω). Then with eqn.(26),
eqn.(20) implies that Aαz = 0 for all α. Thus, ATT

αβ in matrix form is

ATT
αβ =











0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0











(28)

4 Polarization of gravitational waves

In this section, we consider the effect of gravitational waves on free particles.
Consider some particles described by a single velocity field, Uα and a sepa-
ration vector, ζα. Then, the separation vector obeys the geodesic equation
(See App. A)

d2ζα

dτ2
= Rα

βγδU
βUγζδ (29)
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where, Uν = dxν/dτ is the four-velocity of the two particles. We consider the
lowest-order (flat-space) components of Uν only since any corrections to Uν

that depend on hµν will give rise to terms second order in the perturbation in
the above equation. Therefore, Uν = (1, 0, 0, 0) and initially ζν = (0, ǫ, 0, 0).
Then to first order in hµν , eqn. (29) reduces to

d2ζα

dτ2
=

∂2ζα

∂t2
= ǫRα

00x = −ǫRα
0x0 (30)

Using the definition of the Riemann tensor, we can show that in the TT
gauge,

Rx
0x0 = Rx0x0 = −1

2
hTT

xx,00

Ry
0x0 = Ry0x0 = −1

2
hTT

xy,00

Ry
0y0 = Ry0y0 = −1

2
hTT

yy,00 = −Rx
0x0 (31)

All other independent components vanish. This means that two particles
initially separated in the x-direction have a separation vector which obeys
the equation

∂2ζx

∂t2
=

1

2
ǫ

∂2

∂t2
hTT

xx ,
∂2ζy

∂t2
=

1

2
ǫ

∂2

∂t2
hTT

xy (32)

Similarly, two particles initially separated by ǫ in the y-direction obey the
equations

∂2ζy

∂t2
=

1

2
ǫ

∂2

∂t2
hTT

yy = −1

2
ǫ

∂2

∂t2
hTT

xx

∂2ζx

∂t2
=

1

2
ǫ

∂2

∂t2
hTT

xy (33)

We can now use these equations to describe the polarization of a gravita-
tional wave. Let us consider a ring of particles initially at rest as in Fig.
1(a). Suppose a wave with hTT

xx 6= 0, hTT
xy = 0 hits them. The particles

respond to the wave as shown in Fig. 1(b). First the particles along the
x-direction come towards each other and then move away from each other
as hTT

xx reverses sign. This is often called + polarization. If the wave had
hTT

xy 6= 0, but, hTT
xx = hTT

yy = 0, then the particles respond as shown in Fig.

1(c). This is known as × polarization. Since hTT
xy and hTT

xx are independent,
the figures 1(b) and 1(c) demonstrate the existence of two different states
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of polarisation. The two states of polarisation are oriented at an angle of
45o to each other unlike in electromagnetic waves were the two states of
polarization.

5 Generation of gravitational waves

In section III, we obtained the plane wave solutions to the linearized Ein-
stein’s equations in vacuum, eqns.(16). To obtain the solution of the lin-
earised equations (15), we will use the Green’s function method. The Green’s
function, G(xµ − yµ), of the D’Alembertian operator 2, is the solution of
the wave equation in the presence of a delta function source:

2 G(xµ − yµ) = δ(4)(xµ − yν) (34)

where δ(4) is the four-dimensional Dirac delta function. The general solution
to the linearized Einstein’s equations (15) can be written using the Green’s
function as

h̄µν(xα) = −16πG

∫

d4y G(xα − yα)Tµν(yα) (35)

The solutions to the eqn.(34) are called advanced or retarded according as
they represent waves travelling backward or forward in time, respectively.
We are interested in the retarded Green’s function as it represents the net
effect of signals from the past of the point under consideration. It is given
by

G(xµ − yµ) = − 1

4π|x− y|δ
[

|x − y| − (x0 − y0)
]

× θ(x0 − y0) (36)

where, x = (x1, x2, x3) and y = (y1, y2, y3) and |x − y| = [δij(x
i − yi)(xj −

yj)]1/2. θ(x0 − y0)‘ is the Heaviside unit step function, it equals 1 when
x0 > y0, and equals 0 otherwise. Using the relation (36) in (35), we can
perform the integral over y0 with the help of the delta function,

h̄µν(t,x) = 4G

∫

d3y
1

|x− y|Tµν(t − |x − y|,y) (37)

where t = x0. The quantity

tR = t − |x − y| (38)
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is called the retarded time. From the expression (37) for h̄µν , we observe that
the disturbance in the gravitational field at (t,x) is a sum of the influences
from the energy and momentum sources at the point (tR,y) on the past
light cone.

Using the expression (37), we now consider the gravitational radiation
emitted by an isolated far away source consisting of very slowly moving
particles (the spatial extent of the source is negligible compared to the dis-
tance between the source and the observer). The Fourier transform of the
perturbation h̄µν is

˜̄hµν(ω,x) =
1√
2π

∫

dt exp(ιωt) h̄µν(t,x) (39)

Using the expression (37) for h̄µν(t,x), we get

˜̄hµν = 4G

∫

d3y exp(ιω|x − y|) T̃ µν(ω,y)

|x− y| (40)

Under the assumption that the spatial extent of the source is negligible com-
pared to the distance between the source and the observer, we can replace
the term exp(ιω|x − y|)/|x − y| in (40) by exp(ιωR)/R. Therefore,

˜̄hµν(ω,x) = 4G
exp(ιωR)

R

∫

d3y T̃µν(ω,y) (41)

The harmonic gauge condition (14) in Fourier space is

∂µh̄ µν(t,x) = ∂µ

∫

dω ˜̄h
µν

exp(−ιωt) = 0 (42)

Separating out the space and time components,

∂0

∫

dω ˜̄h
0ν

(ω,x)exp(−ιωt) + ∂i

∫

dω ˜̄h
iν

(ω,x)exp(−ιωt) = 0 (43)

Or,

ιω ˜̄h
0ν

= ∂i
˜̄h

iν
(44)

Thus, in eqn.(41), we need to consider the space-like components of ˜̄hµν(ω,y).
Consider,

∫

d3y ∂k

(

yiT̃kj

)

=

∫

d3y
(

∂ky
i
)

T̃ kj +

∫

d3y yi
(

∂kT̃
kj
)
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On using Gauss’ theorem, we obtain,

∫

d3y T̃ ij(ω,y) = −
∫

d3y yi
(

∂kT̃
kj
)

(45)

Consider the Fourier space version of the conservation equation for T µν , viz.,
∂µT µν(t,x) = 0. Separating the time and space components of the Fourier
transform equation, we have,

∂iT̃
iν = ιωT 0ν (46)

Therefore,

∫

d3y T̃ ij(ω,y) = ιω

∫

d3y yi T̃ 0j =
ιω

2

∫

d3y
(

yi T̃ 0j + yj T̃ 0i
)

(47)

Consider
∫

d3y ∂l

(

yi yjT̃
0l
)

=

∫

d3y
[(

∂ly
i
)

yj +
(

∂ly
j
)

yi
]

T̃ 0l+

∫

d3y yi yj
(

∂lT̃
0l
)

(48)
Simplifying the equation above, we obtain for the left hand side

∫

d3y
(

yi T̃ 0j + yjT̃ 0i
)

+

∫

d3y yi yj
(

∂lT̃
0l
)

Since the term on the left hand side of eqn.(47) is a surface term, it vanishes
and we obtain

∫

d3y
(

yiT̃ 0j + yjT̃ 0i
)

= −
∫

d3y yi yj
(

∂lT̃
0l
)

(49)

Using the equations (46) and (48), we can write,

∫

d3y T̃ ij(ω,y) =
ιω

2

∫

d3y ∂l

(

yiyj T̃ 0l
)

(50)

Using the eqn(45), we can write,

∫

d3y T̃ ij(ω,y) = −ω2

2

∫

d3y yiyj T̃ 00 (51)

We define the quadrupole moment tensor of the energy density of the source
as

q̃ij(ω) = 3

∫

d3y yiyj T̃ 00(ω,y) (52)
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In terms of the quadrupole moment tensor, we have

∫

d3y T̃ ij(ω,y) = −ω2

6
q̃ij(ω) (53)

Therefore, the solution (41) becomes

˜̄hij(ω,x) = 4G
exp(ιωR)

R

(

− ω2

6
q̃ij(ω)

)

(54)

Simplifying further,

˜̄hij(ω,x) = −2

3

Gω2

R
exp(ιωR) q̃ij(ω) (55)

Taking the Fourier transform of eqn.(54), and simplifying, we finally obtain
for the perturbation

h̄ij(t,x) =
2G

3R

d

dt2
qij(tR) (56)

where, tR = t − |x − y| is the retarded time. In the expression (54), we see
that the gravitational wave produced by an isolated, monochromatic and
non-relativistic source is therefore proportional to the second derivative of
the quadrupole moment of the energy density at the point where the past
light cone of the observer intersects the cone. The quadrupolar nature of
the wave shows itself by the production of shear in the particle distribution,
and there is zero average translational motion. The leading contribution to
electromagnetic radiation comes from the changing dipole moment of the
charge density. This remarkable difference in the nature of gravitational
and electromagnetic radiation arises from the fact that the centre of mass
of an isolated system can’t oscillate freely but the centre of charge of a
charge distribution can. The quadrupole momnet of a system is generally
smaller than the dipole moment and hence gravitational waves are weaker
than electromagnetic waves.

6 Epilogue

This lecture note on gravitational waves leaves several topics untouched.
There are a number of good references on gravitation where the inquisitive
reader can find more about gravitational waves and their detection. I have
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freely drawn from various sources and I don’t claim any originality in this
work. I hope I have been able to incite some interest in the reader about a
topic on which there is a dearth of literature.
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Appendix A: Some topics in general theory of relativity

An event in relativity is characterised by a set of coordinates (t, x, y, z)
in a definite coordinate system. Transformations between the coordinates
of an event observed in two different reference frames are called Lorentz

transformations. These transformations mix up space and time and hence
the coordinates are redefined so that all of them have dimensions of length.
We write x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z and a general component of a four
vector (x0, x1, x2, x3) as xµ. A Lorentz transformation is then written as

xµ = Λµ
νx

ν (57)

where,

Λ =











γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1











(58)

At this point, it is useful to note the Einstein summation convention: when-
ever an index appears as a subscript and as a superscript in an expression,
we sum over all values taken by the index. Under a Lorentz transformation,
the spacetime interval −(ct)2 + x2 + y2 + z2 remains invariant. The length
of a four-vector is given by

|x| = −(x0)2 + (x1)2 + (x2)2 + (x3)2 (59)

We never extract a square root of the expression (59) since |x| can be nega-
tive. Four-vectors that have negative length are called time-like, while those
with positive lengths are called space-like. Four-vectors with zero length are
called null. The notion of “norm” of a four-vector is introduced with the
help of the Minkowski metric:

η =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











(60)

Then, we have,
|x| = xµηµνxν (61)
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There are two kinds of vectors that are classified in the way they transform
under a Lorentz transformation:

Contravariant :xµ = Λ µ
ν xν

Covariant :xµ = Λ ν
µ xν (62)

Vectors are tensors of rank one. ηµν(ηµν) is called the metric tensor; it
is a tensor of rank two. There are other higher rank tensors which we
will encounter later. If two coordinate systems are linked by a Lorentz
transformation as:

x′ ν = Λν
µxµ (63)

then, multiplying both sides of the equation above by Λ κ
ν and differentiat-

ing, we get,
∂xκ

∂x′ ν
= Λ κ

ν (64)

Therefore, we see that
∂

∂x′ µ
= Λ ν

µ

∂

∂xν
(65)

Thus,

∂µ ≡ ∂/∂xµ =

(

1

c

∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)

(66)

transforms as a covariant vector. The differential operates on tensors to
yield higher-rank tensors. A scalar s can be constructed using the Minkowski
metric and two four-vectors uµ and vν as:

s = ηµνu
µvν (67)

A scalar is an invariant quantity under Lorentz transformations. Using the
chain rule,

dx′ µ =
∂x′ µ

∂xν
dxν (68)

we have,

s =

(

ηµν
∂xµ

∂x′κ

∂xν

∂x′λ

)

u′κv′λ (69)

If we define

gκλ ≡ ηµν
∂xµ

∂x′κ

∂xν

∂x′λ
(70)

then,
s = gκλ u′κv′λ (71)
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gκλ is called the metric tensor; it is a symmetric, second-rank tensor.
To follow the motion of a freely falling particle, an inertial coordinate

system is sufficient. In an inertial frame, a particle at rest will remain
so if no forces act on it. There is a frame where particles move with a
uniform velocity. This is the frame which falls freely in a gravitational field.
Since this frame accelerates at the same rate as the free particles do, it
follows that all such particles will maintain a uniform velocity relative to this
frame. Uniform gravitational fields are equivalent to frames that accelerate
uniformly relative to inertial frames. This is the Principle of Equivalence

between gravity and acceleration. The principle just stated is known as the
Weak Equivalence Principle because it only refers to gravity.

In treating the motion of a particle in the presence of gravity, we define
the Christoffel symbol or the affine connection as

Γµ
αβ =

1

2
gµν

(

∂gνα

∂xβ
+

∂gβν

∂xα
− ∂gαβ

∂xν

)

(72)

Γ plays the same role for the gravitational field as the field strength tensor
does for the electromagnetic field. Using the definition of affine connection,
we can obtain the expression for the covariant derivative of a tensor:

DκAν ≡ ∂Aν

∂xκ
+ Γν

κνA
α (73)

It is straightforward to conclude that the covariant derivative of the metric
tensor vanishes. The concept of “parallel transport” of a vector has im-
portant implications. We can’t define globally parallel vector fields. We
can define local parallelism. In the Euclidean space, a straight line is the
only curve that parallel transports its own tangent vector. In curved space,
we can draw “nearly” straight lines by demanding parallel transport of the
tangent vector. These “lines” are called geodesics. A geodesic is a curve of
extremal length between any two points. The equation of a geodesic is

d2xα

dλ2
+ Γα

µβ

dxµ

dλ

dxβ

dλ
= 0 (74)

The parameter λ is called an affine parameter. A curve having the same path
as a geodesic but parametrised by a non-affine parameter is not a geodesic
curve. The Riemannian curvature tensor is defined as

Rµ
γαν =

∂Γµ
αγ

∂xν
−

∂Γµ
νγ

∂xα
+ Γµ

νβ Γβ
αγ − Γµ

αβ Γβ
νγ (75)

15



In a “flat” space,
Rµ

γαν = 0 (76)

Geodesics in a flat space maintain their separation; those in curved spaces
don’t. The equation obeyed by the separation vector ζα in a vector field V
is

DV DV ζα = Rµ
γανV

µ V ν ζβ (77)

If we differentiate the Riemannian curvature tensor and permute the indices,
we obtain the Bianchi identity:

∂λRαβµν + ∂νRαβλµ + ∂µRαβνλ = 0 (78)

Since in an inertial coordinate system the affine connection vanishes, the
equation above is equivalent to one with partials replaced by covariant
derivatives. The Ricci tensor is defined as

Rαβ ≡ Rµ
αµβ = Rβα (79)

It is a symmetric second rank tensor. The Ricci scalar (also known as scalar

curvature) is obtained by a further contraction,

R ≡ Rβ
β (80)

The stress-energy tensor (also called energy-momentum tensor) is defined as
the flux of the α-momentum across a surface of constant xβ. In component
form, we have:

1. T 00 = Energy density = ρ

2. T 0i = Energy flux (Energy may be transmitted by heat cinduction)

3. T i0 = Momentum density (Even if the particles don’t carry momen-
tum, if heat is being conducted, then the energy will carry momentum)

4. T ij = Momentum flux (Also called stress)
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Appendix B: The Einstein field equation

The curvature of space-time is necessary and sufficient to describe grav-
ity. The latter can be shown by considering the Newtonian limit of the
geodesic equation. We require that

• the particles are moving slowly with respect to the speed of light,

• the gravitational field is weak so that it may be considered as a per-
turbation of flat space, and,

• the gravitational field is static.

In this limit, the geodesic equation changes to,

d2xµ

dτ2
+ Γµ

00(
dt

dτ
)2 = 0 (81)

The affine connection also simplifies to

Γµ
00 = −1

2
gµλ∂λg00 (82)

In the weak gravitational field limit, we can lower or raise the indices of a
tensor using the Minkowskian flat metric, e.g.,

ηµνhµρ = hν
ρ (83)

Then, the affine connection is written as

Γµ
00 = −1

2
ηµλ∂λh00 (84)

The geodesic equation then reduces to

d2xµ

dτ2
=

1

2
ηµλ

(

dt

dτ

)2

∂λh00 (85)

The space components of the above equation are

d2xi

dτ2
=

1

2
(
dt

dτ
)2∂ih00 (86)

Or,
d2xi

dt2
=

1

2
∂ih00 (87)
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The concept of an inertial mass arises from Newton’s second law:

f = mia (88)

According to the the law of gravitation, the gravitational force exerted on an
abject is proportional to the gradient of a scalar field Φ, known as the scalar
gravitational potential. The constant of proportionality is the gravitational
mass, mg:

fg = −mg∇Φ (89)

According to the Weak Equivalence Principle, the inertial and gravitational
masses are the same,

mi = mg (90)

And, hence,
a = −∇Φ (91)

Comparing equations (86) and (91), we find that they are the same if we
identify,

h00 = −2Φ (92)

Thus,
g00 = −(1 + 2Φ) (93)

The curvature of space-time is sufficient to describe gravity in the Newto-
nian limit as along as the metric takes the form (93). All the basic laws of
Physics, beyond those governing freely-falling particles adapt to the curva-
ture of space-time (that is, to the presence of gravity) when we are work-
ing in Riemannian normal coordinates. The tensorial form of any law is
coordinate-independent and hence, translating a law into the language of
tensors (that is, to replace the partial derivatives by the covariant deriva-
tives), we will have an universal law which holds in all coordinate systems.
This procedure is sometimes called the Principle of Equivalence. For exam-
ple, the conservation equation for the energy-momentum tensor T µν in flat
space-time, viz.,

∂µT µν = 0 (94)

is immediately adapted to the curved space-time as,

DµT µν = 0 (95)

This equation expresses the conservation of energy in the presence of a
gravitational field. We can now introduce Einstein’s field equations which
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governs how the metric responds to energy and momentum. We would like
to derive an equation which will supercede the Poisson equation for the
Newtonian potential:

∇2Φ = −4πGρ (96)

where, ∇2 = δij∂i∂j is the Laplacian in space and ρ is the mass density.
A relativistic generalisation of this equation must have a tensorial form so
that the law is valid in all coordinate systems. The tensorial counterpart of
the mass density is the energy-momentum tensor, T µν . The gravitational
potential should get replaced by the metric. Thus, we guess that our new
equation will have T µν set proportional to some tensor which is second-order
in the derivatives of the metric,

T µν = κAµν (97)

where, Aµν is the tensor to be found. The requirements on the equation
above are:-

• By definition, the R.H.S must be a second-rank tensor.

• It must contain terms linear in the second derivatives or quadratic in
the first derivative of the metric.

• The R.H.S must be symmetric in µ and ν as T µν is symmetric.

• Since T µν is conserved, the R.H.S must also be conserved.

The first two conditions require the right hand side to be of the form

αRµν + βRgµν = Tµν (98)

where Rµν is the Ricci tensor, R is the scalar curvature and α & β are
constants. This choice is symmetric in µ and ν and hence satisfies the third
condition. From the last condition, we obtain

gνσDσ(αRµν + βRgµν) = 0 (99)

This equation can’t be satisfied for arbitrary values of α and β. This equa-
tion holds only if α/β is fixed. As a consequence of the Bianchi identity,
viz.,

DµRµν =
1

2
DνR (100)
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we choose,

β = −1

2
α (101)

With this choice, the equation (42) becomes

α(Rµν − 1

2
Rgµν) = T µν (102)

In the weak field limit,
g00 ≈ −2Φ (103)

the 00-component of the equation(42), viz.,

− α∇2g00 = T00 ⇒ 2α∇2Φ = ρ (104)

Compare this result with Newtons equation (40), we obtain,

2a =
1

4πG
(105)

Thus, we obtain the Einstein field equations in their final form as

Rµν − 1

2
Rgµν = 8πGT µν (106)
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Fig 1(a)

Figure 1: The initial configuration of test particles on a circle before a gravitational wave hits
them.
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Fig. 1(b)

y

x

Figure 2: Displacement of test particles caused by the passage of a gravitational wave with the
+ polarization. The two states are separated by a phase difference of π.
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Fig. 1(c)

Figure 3: Displacement of test particles caused by the passage of a gravitational wave with the
× polarization.

22


